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Using a model of an elastic and viscoelastic (standard-linear) solid, a non-linear equation of state is constructed to model the 
volume deformation of soft soils. The moduli of bulk compression are assumed to be non-linear functions of a parameter which 
characterizes the structural failure of the soil. It is shown that this law describes observed effects of the bulk compression of soil. 
The results of a parametric analysis of the equation of state are given. © 1998 Elsevier Science Ltd. All rights reserved. 

The most complete of the existing models of the deformation of soil-type media is that given in [1, 2], 
which takes into account all the basic mechanical properties which affect the dynamic processes (non- 
linear and irreversible volume deformability, elastoplastic shear and the dependence of the yield stress 
on pressure during shear) as well as the rheological properties. A detailed review of research on the 
equation of state and experimental justification for the soil model can be found in [3]. 

A model of the bulk deformation of soil which takes into account the viscous properties of the medium 
has been described in [4, 5]. The equations of state proposed in [9], which take the relaxation properties 
of the medium into account, are based on the results of experimental investigations on the dynamic 
deformation of soil [6-9] and a development of the model proposed in [1, 2].:~ 

The model proposed in [1, 2] was further improved in [4-7], mainly by refining and perfecting the 
law of bulk deformation; the law of shear deformation was left unchanged. Models which take account 
of more complex experimental factors have also been proposed [6--8]. 

The non-linear law of the bulk deformation of soil with variable moduli of bulk compression proposed 
below is based on the approach previously followed in developing the laws of interaction between solids 
and soil [10, 11]. 

1. P R I N C I P L E S  OF THE C O N S T R U C T I O N  OF THE P R O P O S E D  
E Q U A T I O N  OF STATE 

Since soil cannot withstand any substantial tensile stresses, only compressive stresses will be considered. 
It has been shown by experiment [4--9] that when soil in its natural state is compressed, its structural 
bonds are destroyed. When the compressive stress reaches a certain value, the structural bond fails 
completely. This gives rise to dilatancy effects (depending on the relations between the main compressive 
stresses), and there is a change in the density and therefore the volume of the soil, as well as the values 
of its mechanical parameters. The original values of the bulk modulus of the soil change especially during 
deformation. It has been found by experiment that the value of the shear modulus can change by an 
order of magnitude or more during shear deformation of soil [10, 11]. 

In this paper we consider the law of bulk deformation, assuming that the bulk modulus of the soil is 
a function of the structural failure of the soil. 

It is assumed that the structural bonds of the soil start to fail from the very beginning of compression, 
and fail completely when the bulk deformation 0 reaches a value 0. (the values of the bulk deformation 
0 and pressure P are assumed to be positive during compression). The degree of failure (fractionation) 
is assumed to depend on the rate at which the load is applied to the soil. In some cases, the fractured 
soil starts to become more dense as the pressure increases during failure, and the bulk modulus of the 
soil K increases up to a value of the bulk deformation 0 = 0.,, but any further increase in compression 
has no effect on the mechanical parameters of the soil. 

tPrikL Mat. Mekh. Vol. 62, No. 3, pp. 503--511, 1998. 
:[: See also KUUNICH, Yu. V.., NAROZHNAYA, Z. V. and RYKOV, G. V., The mechanical characteristics of sandy and day 

soils taking into account their viscoplastie properties under short-term dynamic loads. Preprint No. 69. Inst. Problem Mekh., 
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It should be noted that when the bulk deformation has reached the value 0 = 0.., the only soils for 
which the shear modulus increases are those in which, after failure, the structural bonds are renewed 
between the particles during compression. The increase in the bulk modulus also depends on the 
moisture content of the soil. For instance, after the total failure of loess soils with 15-20% moisture 
content, an increase in pressure results in compaction of the soil and accordingly an increase in its density, 
which in turn leads to an increase in the bulk moduli of the soil. This also occurs in loams, sandy loams 
and sands with 15-20% moisture content. 

An increase in the compression of dry soils and rock after failure does not always lead to an increase 
in the bulk modulus of the medium. Soil and rocks with a low moisture content (granite, basalt, marble, 
tuff, etc.) do not bind or stick together after total failure, but remain in their fractured state. In such 
cases, the bulk modulus does not increase as the compression increases. 

We will therefore consider two versions of the law of bulk deformation: for dry and brittle soils, which 
do not stick together after failure, and for compacted, moist soils. 

On the assumption that the bulk modulus is a function of the failure of the medium, the law of bulk 
compression of the soil is non-linear. 

In its general form, the law of deformation of the soil is [1, 2] 

P = f(Is,O), ~ +  2~Sij = 2Geij 

(1.1) 

~'= 2 j  2 

Here S/j, eij are deviators of the stress tensor and deformation rates respectively, the tilde denotes the 
Jaumann derivative [2], the functional ~ > 0 for J2 = (j(p))2, ~. _~ 0 for J2 < (j(p))2, j (p )  is a function 
which defines the generalized condition of Mises flow [6, 7] and G is the shear modulus, which is related 
to the bulk modulus by the well-known equation 

G=~I-2Ix~I+~ (1.2) 

where Ix is Poisson's ratio of the soil. 
We take Is ~ [0, 1] as the parameter characterizing the extent of fracture of the soil. The bulk modulus 

is assumed to be a function of the fracture parameter K = K(I,). Hence, by (1.2), the shear modulus 
of the soil is also a function of the fracture parameter. 

Certain conditions, to be considered below, are imposed on the equation P = f(Is, 0) in (1.1). 
We will now consider the laws of bulk compression of a soil medium in the light of the above 

assumptions. Shear deformations of the soil are described by the same equations (1.1) proposed in [2]. 

2. A N O N - L I N E A R  E L A S T O P L A S T I C  LAW OF BULK 
D E F O R M A T I O N  OF SOIL 

The model of a linearly elastic medium is used as the basic equation of state. If the bulk modulus is 
a function of structural failure of the soil, the equation of state of the medium has the form 

P = Ke(Is)O for dO/dr ~ 0 (2.1) 

P = KR(I,)O for dO/dr < 0 (2.2) 

For brittle, dry soils, the quantity Ke(Is) is given by the relation 

K,(/.,)= K.exp(a(1-1,)) ,  I, =0/0, (2.3) 

For soft, compacting, moist soils with 0 ~ 0 ~ 0. and dP/dt < 0 

K e ( / , )  = K t exp(13(l s - 1 ) ) ,  I s = 0 / 0 ,  (2.4) 

For soil of these types with 0 ~< 0 ~< 0. and dP/dt >t O, relation (2.3) holds. 
The unloading modulus varies as follows: 
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KR(Is )  = KRt¢ exp(T(l s - 1)), I s = OI 0 R (2.5) 

In relations (2.1)-(2.5) P is the compression, 0 is the actual value of the deformation, 0. is the 
deformation at which there is complete structural failure of the soil, 0t is the deformation for dP/dt < 0, 
0 < 0t < 0., OR is the deformation corresponding to the start of unloading for dO/dt < 0, or, I], ~/are 
dimensionless parameters characterizing the degree of change of the moduli of compression and 
unloading KeKR, respectively, K. is the value of the bulk modulus of completely fractured soil, Kt is the 
value of the bulk modulus of soil for 0 = 0t, Kmv is the initial value of the unloading modulus. 

We can make a qualitative analysis of the equation of state (2.1) and (2.2) by constructing graphs of 
the compression of the soil P(0). To do so, we determine the pressure P, specifying the change of 
deformation in the form 

0 = 0m sin 0rt/T) (2.6) 

where 0m is the maximum deformation, t is the time and Tis the half-period of the change of deformation, 
We will first consider the P(0) curves for brittle soils. We use Eqs (2.1)-(2.3) in this case. The graph 

of the compression of soil for model parameter values Ko = 10 MPa; (~ = 2.5; 13 = 0.1; 7 = 1.0; Km¢ = 
K, exp c~ and 0m = 0.175; T = 0.4 is shown in Fig. 1. 

Curves 1-3 in Fig. 1 refer to the values 0. = 0.3; 0.25 and 0.2, respectively. For all values of 0., the 
pressure increases with deformation, reaches a maximum, and then decreases. After the deformation 
has reached the maximum value 0 = 0m, unloading begins. According to Eq. (2.2), unloading is also 
non-linear. At every stage, the graphs of the bulk and unloading moduli P(0) are decreasing functions 
of the deformation in the given case. Equations (2.1) can thus describe the "descending" part of the 
graph observed experimentally. As Fig. 1 shows, the parameter 0. characterizes the structural strength 
of the soil. A decrease in 0. leads to a decrease in the maximum pressure. 

By varying the values of the model parameters a, I], ?, K., KeN one can obviously obtain a set of graphs 
P(0) with different values of the maximum pressure and residual deformation. Specific parameters values 
must be determined experimentally for specific types of soil. The methods used to find oc, 13 and ~/are 
described in [10]. The values of K, and KeN are found as described, for example, in [4, 5]. 

Essentially, the bulk moduli found from Eqs (2.3)-(2.5) are the secant moduli of the graph P(O). 
In fact, while the soil is undergoing structural failure during compression, its mechanical properties 

change. Thus, each value of the deformation 0 corresponds to a definite state of the soil material and, 
therefore, a specific value of the bulk modulus corresponds specifically to a given state. If the given 
state were the final state of the soil, the value of the modulus would then remain constant. However, 
it is obvious that no such state exists. The structural state of soil can always be altered by applying 
different loads. 

The values of the mechanical parameters of the fractured structure are usually determined 
experimentally. One must start from this position when setting up the equations of the model. However, 
Eqs (2.3)-(2.5) can be expressed in different forms. 
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Figure 2 shows the curves P(0) in the case where relations (2.3)-(2.5) are satisfied. Curves 1-5 
correspond to the values 0. = 0.5; 0.3; 0.2; 0.1; 0.01. For curve 5, KeN = 10K. exp a. The values of the 
other parameters of the model are unchanged. 

The compression graphs are qualitatively different in this case: there is no "descending" section, and 
after a certain increment of deformation, the pressure and unloading start to increase rapidly when 
dO/dt < O. 

These graphs correspond to soft compacting soils, such as loess with a 15-25% moisture content [4--9]. 
In such cases the soil structures tarts to break down under the effect of compression, but failure stops 
after a certain time. The structural changes occur as the bulk modulus increases. In fact, the soil starts 
to compact and strengthens. The bulk modulus of the soil begins to increase from a time dP/dt < O. 
corresponding to the transition point on the graph of P(0), where 0 = 0t. As we can see from Fig. 2, 
the value of 0 depends on 0.. As 0. decreases, the value of Ot also decreases (curves 1-4). When 0. = 
0.01, which denotes insignificant structural strength of the soil, the P(0) curve corresponds to the graph 
of fractured soil (curve 5). 

Obviously here too, we can obtain variations of the P(0) curve corresponding to the results of specific 
experiments by varying the values of the model parameters. 

As 0. --* 0o the equations of state of the soil (2.1) and (2.2) become the model of a linearly elastic 
medium. 

The model considered does not take into account temporal effects, the viscous properties of the soil, 
and so on. We will therefore allow for these parameters using the model of a linear viscoelastic 
body. 

3. A N O N - L I N E A R  V I S C O P L A S T I C  LAW OF D E F O R M A T I O N  OF SOIL 

We will consider a linear viscoelastic (standard linear) solid, and assume that the bulk moduli 
are also functions of the structural changes in the soil. Then the equations of state of the soil have the 
form 

Kol(ls) d---P'at + K~l(ls)l~°(l~)P = ~ + P'°(l')0" for dO/dr >>- 0 (3.1) 

K~'(l.~.)~tP=~tO for dOldt<O (3.2) 

where Ko(Is), Ks(Is), KR(Is) are functions of the dynamic and static compression and unloading, 
respectively, which characterize the changes of these moduli with the fracture parameter Is, and ~ is 
a parameter of the volume viscosity of the soil. 

The functions of the change in the dynamic and static bulk moduli of the soil Ko(Is) and Ks(Is) for 
brittle soils in the range 0 <~ 0 ~< 0. are defined by the relations 
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Kn(1 s) = Ko.  exp(13(l - Is)), Ks(Is) = Ks, exp((x(l - / s ) )  (3.3) 

where Kn* and Ks. are, respectively, the moduli of dynamic and static compression of structurally- 
fractured soil, 13 and cx are dimensionless indices characterizing the degree of change of the bulk moduli 
of the soil, I s = 0/0. and 0. is the value of the deformation at which the soil experiences total structural 
failure. 

According to (3.3), the initial values of the bulk moduli are 

KoN = Ko, exp13, Ks~ = Ks, expct (3.4) 

Hence we have 

(x=13+ln(? . /7^,) ,  y. = KD. I Ks,, TN = KoN I Ks~: (3.5) 

In most cases the values of Ks. are determined experimentally, and the value Of KD, remains unknown. 
Thus, in order to determine the ratio of the moduli of dynamic and static Compression for structurally- 
fractured soil, we use the expression 

~/. = Tic + (Tin - ~/,v)(~t~¢ |d0/dr)  ~, ~t:¢ = KDuKsN I[(Kna - Ks~v)rl] (3.6) 

where Yr, is the maximum possible value of this parameter for the given form of soil, Ix, v is the viscosity 
parameter for the soil with its initial structure, ~ is the viscosity coefficient and × is a dimensionless 
exponent. 

According to (3.6), 11. depends on the rate of deformation. In fact, breakdown of the soil structure 
and its fractionation are assumed to depend on the rate of loading of the medium. The greater the 
extent of breakdown of the soil structure (fractionation), the larger the value of y. will be. 

The change of the viscosity parameter with change in soil structure is defined by the relation 

~t0 (Is) = Ix, exp(cz ° (l - I s )), ~t. = Ix N / Y,, cz 0 = In (y.)  (3.7) 

where c~ ° is a dimensionless index characterizing the degree of change of the viscosity parameter as a 
function of the breakdown of the soil structure. 

The values of the parameters 13, ~,,,,, × are found by experiment. The values of the other parameters 
of the model can then be determined using (3.3)-(3.7). 

In this version of the model, according to Eq. (3.1), the soil continues to break down up to the instant 
when 0 = 0., when dO/dt >I O. This is true of brittle soils. 

The graphs of P(0) obtained in experiments do not have a "descending" section for compacted moist 
soils. In such cases the functions of the model (3.1) are defined as follows: 

Ko(Is )=Kntexp(~3t ( l s -1) ) ,  Ks ( l s )=KD( l s ) l y s ,  for 0~<0~<0.,  d P I d t < O  (3.8) 

Here Is = 0/0t; 0t, KD, Dst are the values of the corresponding parameters for dP/dt < 0. For 0 <~ 0 ~< 0. 
and dP/dt >- O, relations (3.3) are satisfied. 

Relations (3.8) imply that once the condition dP/dt < 0 is satisfied, the pressure starts to increase 
and continue to increase as long as the deformation is increasing. The pressure can only increase up 
to a certain value of the deformation 0... An increase of pressure and deformation will suppress 
breakdown of the soil structure, that is, will increase the secant moduli of the soil, and Yst decreases. 
The actual value of Yst is given by the expression 

. . (  O - 0, "~ do 
~s, = ~'s,0 - (%,0 - ~'.. )[---0-~.. ~ (3.9) 

where y.. is the limiting value of Yst when 0 = 0.., Yst is the value of Yst for dP/dt < 0 and 130 is a 
dimensionless exponent. 

Once the deformation 0.. has been attained, the parameters of the model remain constant. The values 
of 0.., y.. and 130 are determined experimentally. 

As the non-linear elastoplastic model, the unloading modulus KR(I~) is defined by the relation 

K~ (Z,) = KR~ exp(13R (I, - 1)), /~ -- 0 / OR (3.10) 
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where 0 s is the value of the deformation at time dO/dt < O, Kna is the initial value of the unloading 
modulus and 13R is a dimensionless index characterizing the degree of change of the unloading modulus. 

We will consider the behaviour of the soil described by Eqs (3.1) and (3.2), using relation (2.6) to describe the 
change in deformation. 

Figure 3 shows how the pressure changes with the deformation for brittle soils. The graphs for P(0) were obtained 
with model parameter values: 13 = 0.5; Ks. = 10 MPa TN = 1.1; Tm= 10; 0. = 0.05; 13R = 3.0 and loads 0m = 0.15; 
T = 0.4 s. Curves 1-5 correspond to values P-N = 10, 20, 50, 100 and 1000 s -I. 

We can see from Fig. 3 that an increase in the viscosity parameter BN, which corresponds to a reduction in the 
viscosity coefficient, will lead to a substantial quantitative change in the curves P(0). An increase in the Viscosity 
coefficient leads to an increase in the loss of mechanical energy, determined correspondingly by the area of the graph 
P(0). Hence this should lead to an increase in the absorption coefficient of the soil, as found in experiments. An 
increase in the viscosity coefficient will also lead to a clear manifestation of the "descending" part of  the graph P(0). 

The change in pressure for different values of ~tN shows that the model is quite sensitive to changes in the Viscosity 
parameter (Fig. 3). 

Different unloading curves can be obtained by varying the values of 13n and KeN. The unloading branch 1 and 
2' is obtained for 13a = 0.5 and K/~v = 5KDN. 

Fixing the values IxN = 1000 s -L, we will consider the influence of a change of deformation rate on the curves of 
P(e) (Fig. 4). 

Curves 1-7 in Fig. 4 correspond to the values T = 4 x 10 -6, 4 x 10 -5, 4 x 10 q ,  4 x 10 -3, 4 x 10 -2 and 10 s. Clearly, 
a change in T which, according to Eq. (2.6), corresponds to a change in the deformation rate, has a substantial 
effect on the g(aph of P(0). Curves 1-7 in Fig. 4 roughly correspond to the values of the deformation rate 0 = 
dO/dt = 106, 102, 104, 102, 102, 4 and 0.4 s -1. 

According to the given equation of  state of the soil for values of 0 = 1 and 10 s -z the graphs of P(0) are almost 
identical (curves 6, 7 Fig. 4). As the deformation rate increases further, there is a substantial change in the shape 
of the curves P(0). The absorption properties of the soil also intensify. 
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According to the results of calculations, a change in the values of the parameters 13, TN, Ym, Ks., O, also affects 
the shape of the curves. The change in the curves P(0) for different values of the parameters of the model are on 
the whole consistent with experimental results [4-9]. 

The shape of the curves of P(0) is qualitatively different for soft compacting soils from those for brittle soils. 
Figure 5 shows curves of P(0) for soft soils taking !nto account relations (3.8) and (3.9) for the following parameter 

values: 13t = 0.1; ~ = 0.7; y.. = 2 and Ptv= 100 s-L The values of the other parameters were unchanged. 
Curves 1-3 (Fig. 5) correspond to the values 0. = 0.05; 0.1 and 0.5. Curve 4 was obtained with KeN --- 5Ko,v. 
The P(0) curves for soft soils show a change in sign of the curvature, as discussed in [1, 2]. An increase in 0. will 

lead to an increase in the absorption properties of the soil, since the process of soil breakdown is protracted and 
requires a larger expenditure of mechanical energy. 

We will consider the influence of changes of the viscosity parameter or viscosity (coefficient) on the shape 
of the P(0) curves for fixed values of the parameters of the model 13, TN, Tin, Ks*, I~t, 130, T'*, 0. and 0 m = 0.15, 
T =  0.4s. 

Figure 6 shows the curves obtained for values of the viscosity parameter tXN = 10, 20, 50, 100 S -1 (curves 1--4). 
An increase in ~tjv (a decrease in the viscosity coefficient 11) leads to a reduction in the absorptivity of the soil. No 
changes in the sign of curvature in the P(0) curves are observed for large values of the viscosity coefficients (curve 
/). When the viscosity parameters increase, the structure breaks down at the initial stages of compression and this 
is accompanied by an increase in the bulk moduli of the soil as described by relations (3.8). 

We analysed the effect of a change of deformation rate on the behaviour of the P(0) curves at values of 
0 = dO/dt = 106, 104, 102, 1 S -1 (Curves 1--4, Fig. 7). The value of the viscosity parameter for these curves was fixed: 
~tjv = 1000 s-k An increase in the deformation rate also increases the absorption properties of the soil. A rise in 
the deformation rate is also accompanied by fracture of the soil at early stages of compression so that no changes 
are observed in the sign of the curvature of P(0). 

By also varying the values of the parameters of Eq. (3.10), one can obtain different branches of unloading, and 
therefore different values of the residual deformations. 

The results of  the calculations show that the proposed non-linear laws of  deformation of  the soil are, 
on the whole, in qualitative agreement with the results of experimental investigations of  soil tests [4-9]. 
Note that there is no need to introduce an additional equation into the model to describe the 
"descending" part of  P(0)  curve, as in [4]. The deformation of the soil before the unloading stage is 
described completely by the single equation (3.1). As we can see from Figs 3--7, the equations of  state 
(3.1) and (3.2) take full account of  the basic properties of  the soils. 

In the same way, equations of  state which allow for breakdown of the soil structure can be formulated 
for shear deformation of the soil medium. 

However, since bulk deformation prevails over shear deformation, we have confined ourselves here 
to a more detailed consideration of the laws of bulk deformation of the soil. 

4. D I L A T A N C Y  

The dilatancy properties of soil develop when the structure breaks down [8]. Allowance for dilatancy 
should be made as follows. 

On the usual assumption of soil mechanics, the bulk deformation is taken to consist of two parts 

0 = 0p + 0 s (4.1)  

P, MPa 
go 

0,075 $ 

Fig. 7. 
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where 0 is the total bulk deformation, 0~, is the bulk deformation corresponding to the action of the 
spherical part  of the stress tensor and 0s is that corresponding to the action of a deviator of the stress 
tensor. 

The value of  0e is found from the above laws of bulk deformation of the soil. The  component  arising 
from shear deformations is determined from the relation [8] 

os =  .oe (4.2) 

where ~,n is the dilatancy coefficient and e is the shear deformation. 
The dilatancy coefficient can be defined by the expression 

~,D = ( 1 - - 1 s ) ( ~ l k t s )  ~,  I s = E / e , ,  ~ = d e l  dt (4.3) 

where e, is the limiting value of the shear deformation at which there is total structural failure of the 
soil during pure shear, Its is the parameter of shear viscosity of the soil and co is a dimensionless exponent. 

The values of e., P.s and ~ are determined experimentally. 
It is clear from (4.2) and (4.3) that the soil volume increases with shear deformation e. This continues 

up to the deformation value e = e,, after which, according to (4.2) and (4.3), the soil becomes denser 
and therefore decreases in volume. The diminution in volume of the soil can be restricted by any limiting 
value of the shear deformation e = e.., beyond which it can be assumed that the shear deformation 
has no effect on the change in volume of the soil. 

In cases where the spherical component  exceeds the deviator part of the stress tensor during 
compression of the soil, the dilatancy properties of soils can be neglected [6, 7]. 

The laws of the bulk deformation of soils proposed above are therefore an improvement on, and 
supplement, the equation of  state of soils (1.1) proposed in [1, 2], giving a better  description of  their 
behaviour, while allowing for the basic properties, including rheological effects, observed experimentally. 

The graphs of the bulk compression of soils obtained by means of a parametric analysis of the laws 
of deformation are quite consistent with experimental results [4-9], thus confirming that the laws can 
be used to solve applied problems of soil mechanics. The proposed non-linear laws may also apply to 
the behaviour of materials whose structure changes during deformation. 
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